Modelling many-to-many table relationships¶
Table of contents
Introduction¶
A many-to-many
relationship between two tables can be established by creating a table typically called as
bridge/junction/join table and adding foreign-key constraints from it to the original tables.
Say we have the following two tables in our database schema:
article (
id SERIAL PRIMARY KEY,
title TEXT
...
)
tag (
id SERIAL PRIMARY KEY,
tag_value TEXT
...
)
These two tables are related via a many-to-many
relationship. i.e:
- an
article
can have manytags
- a
tag
has manyarticles
Step 1: Set up a table relationship in the database¶
This many-to-many
relationship can be established in the database by:
Creating a bridge table called
article_tag
with the following structure:article_tag ( article_id INT tag_id INT PRIMARY KEY (article_id, tag_id) ... )
Adding foreign key constraints from the
article_tag
table to:- the
article
table using thearticle_id
andid
columns of the tables respectively - the
tag
table using thetag_id
andid
columns of the tables respectively
- the
The table article_tag
sits between the two tables involved in the many-to-many relationship and captures possible
permutations of their association via the foreign keys.
Step 2: Set up GraphQL relationships¶
To access the nested objects via the GraphQL API, create the following relationships:
- Array relationship,
article_tags
fromarticle
table usingarticle_tag :: article_id -> id
- Object relationship,
tag
fromarticle_tag
table usingtag_id -> tag :: id
- Array relationship,
tag_articles
fromtag
table usingarticle_tag :: tag_id -> id
- Object relationship,
article
fromarticle_tag
table usingarticle_id -> article :: id
Step 3: Query using relationships¶
We can now:
fetch a list of articles with their tags:
query { article { id title article_tags { tag { id tag_value } } } }
query { article { id title article_tags { tag { id tag_value } } } }{ "data": { "article": [ { "id": 1, "title": "sit amet", "article_tags": [ { "tag": { "id": 1, "tag_value": "mystery" } }, { "tag": { "id": 2, "tag_value": "biography" } } ] }, { "id": 2, "title": "a nibh", "article_tags": [ { "tag": { "id": 2, "tag_value": "biography" } }, { "tag": { "id": 5, "tag_value": "technology" } } ] } ] } }fetch a list of tags with their articles:
query { tag { id tag_value tag_articles { article { id title } } } }
query { tag { id tag_value tag_articles { article { id title } } } }{ "data": { "tag": [ { "id": 1, "tag_value": "mystery", "tag_articles": [ { "article": { "id": 1, "title": "sit amet" } } ] }, { "id": 2, "tag_value": "biography", "tag_articles": [ { "article": { "id": 1, "title": "sit amet" } }, { "article": { "id": 2, "title": "a nibh" } } ] } ] } }
Fetching relationship information¶
The intermediate fields article_tags
& tag_articles
can be used to fetch extra
information about the relationship. For example, you can have a column like tagged_at
in the article_tag
table which you can fetch as follows:
query {
article {
id
title
article_tags {
tagged_at
tag {
id
tag_value
}
}
}
}
Flattening a many-to-many relationship query¶
In case you would like to flatten the above queries and avoid the intermediate fields article_tags
&
tag_articles
, you can create the following views additionally and then
query using relationships created on these views:
CREATE VIEW article_tags_view AS
SELECT article_id, tag.*
FROM article_tag LEFT JOIN tag
ON article_tag.tag_id = tag.id
CREATE VIEW tag_articles_view AS
SELECT tag_id, article.*
FROM article_tag LEFT JOIN article
ON article_tag.article_id = article.id
Now create the following relationships:
- Array relationship,
tags
from thearticle
table usingarticle_tags_view :: article_id -> id
- Array relationship,
articles
from thetag
table usingtag_articles_view :: tag_id -> id
We can now:
fetch articles with their tags without an intermediate field:
query { article { id title tags { id tag_value } } }
query { article { id title tags { id tag_value } } }{ "data": { "article": [ { "id": 1, "title": "sit amet", "tags": [ { "id": 1, "tag_value": "mystery" }, { "id": 3, "tag_value": "romance" } ] }, { "id": 2, "title": "a nibh", "tags": [ { "id": 5, "tag_value": "biography" }, { "id": 3, "tag_value": "romance" } ] } ] } }fetch tags with their articles without an intermediate field:
query { tag { id tag_value articles { id title } } }
query { tag { id tag_value articles { id title } } }{ "data": { "tag": [ { "id": 1, "tag_value": "mystery", "articles": [ { "id": 1, "title": "sit amet" } ] }, { "id": 2, "tag_value": "biography", "articles": [ { "id": 1, "title": "sit amet" }, { "id": 2, "title": "a nibh" } ] } ] } }
Note
We do not recommend this flattening pattern of modelling as this introduces an additional overhead of managing
permissions and relationships on the newly created views. e.g. You cannot query for the author of the nested articles
without setting up a new relationship to the author
table from the tag_articles_view
view.
In our opinion, the cons of this approach seem to outweigh the pros.